LAPORAN KASUS

The Role of Conventional Chest X-Ray in Detection and Evaluation of Long COVID-19

Andri, Yuanita Amanda
Wahidin Sudirohusodo Hospital, Mojokerto, East Java, Indonesia

ABSTRACT

A 52-year-old woman came to ER with shortness of breath, fever, and cough with oxygen saturation of 80% on room air. The COVID-19 PCR test was positive. CXR showed it infiltrates ground-glass opacities in both lungs and cardiomegaly. Chest X-ray at discharge from the hospital showed decreased infiltrate and fibrosis in two lung. She came to the ER 4 days later with worsened shortness of breath. CXR showed diffuse infiltrates in both lungs and cardiomegaly. Discussion: COVID-19 patients can develop long-term sequelae and complications (long COVID-19). Although CT is now considered the primary investigation for COVID-19, CXR is still valid for detecting and monitoring its progression. Conclusion: CXR is useful for detecting and monitoring the rapid advancement of lung abnormalities in long COVID-19.

Keywords: COVID-19, long COVID-19 chest X-ray

INTRODUCTION

COVID-19 is a novel disease, causing a global pandemic with a risk of long-term sequelae, called long COVID-19.1 The role of conventional radiography should be studied for the detection and evaluation of long COVID-19 because of its availability and its efficiency and ease to use.2

Case

A 52-year-old woman came to ER with shortness of breath, fever, and cough with oxygen saturation on 80% room air. Her COVID-19 PCR Test was positive. The chest X-Ray AP position showed infiltrates and ground-glass opacities in both sides of the lung and cardiomegaly with CTR of 76% (Figure 1). The diagnosis was COVID-19 pneumonia.

She was admitted to the isolation room, treated with oxygen, anti-viral, antibiotics, vitamins, and other symptomatic drugs, and discharged after three weeks. At discharge, her symptoms got better. The oxygen saturation was on 93% room air, but the COVID-19 PCR test was still positive. The chest X-Ray still showed infiltrates in both lungs with minimal visible improvement from the first CXR and cardiomegaly with CTR 76%; concluded as COVID-19 pneumonia seemed to improve from the first chest X-ray (Figure 2).

She was discharged, followed by self-isolation at home. She came to the ER again four days later with worsened shortness of breath. Her oxygen saturation dropped to 86% in room air. The COVID-19 PCR test was still positive, and the chest X-Ray showed deterioration. The chest X-Ray findings were decreased infiltrates and fibrotic on both lungs; resolution of opacities, and cardiomegaly with CTR of 78% (Figure 4).

Discussion

COVID-19 patients can develop long-term sequelae and complications. National Institute for Health and Care Excellence (NICE) stated that ongoing symptomatic COVID-19 is defined as signs and symptoms that persist between 4 and 12 weeks from the onset of the infection.3 A prospective study of COVID-19 patients found 13.3% had symptoms lasting >4 weeks. This lasting effect has been termed long COVID-19.4 The term ‘long COVID-19’ includes both ongoing
LAPORAN KASUS

Figure 1. Anterioposterior CXR at first admission - showed infiltrates, ground-glass opacities in both lungs and cardiomegaly

Figure 2. Anterioposterior CXR at first discharge - showed infiltrates on both sides of the lungs and cardiomegaly

Figure 3. Anterioposterior CXR at second admission - showed infiltrates and ground-glass opacities on both lungs indicated COVID-19 pneumonia

Figure 4. Anterioposterior CXR at second discharge - showed resolution of the infiltrates and opacities and the formation of fibrosis on both lungs

symptomatic COVID-19 (4–12 weeks) and pasca-COVID-19 syndrome (>12 weeks). The clinical symptoms of this syndrome include fatigue, breathlessness, cough, joint pain, chest pain, muscle aches, headaches. These symptoms can be multisystemic, often appear as clusters, fluctuate over time, and can have a significant psychological and social impact on patients. Therefore these symptoms should be detected as early as possible. It also needs to be regularly monitored.

Chest X-ray (CXR) helps detect and monitor lung abnormalities in COVID-19, especially in critical patients admitted to intensive care units. It is also used as one of the proposed diagnostic criteria for long COVID-19. In a review of SARS-CoV-2 pneumonia patients in Spain, none of the X-rays performed at 8–12 weeks were normal. Findings included reticular opacities/peripheral atelectasis in 88% of cases and ground-glass opacities in 61%. Remarkably, 25% of examinations showed poor inspiratory effort. In most patients who survive severe COVID-19, there is a significant tendency to develop fibrotic lung tissue.

Although CT is now considered the primary investigation for COVID-19, not every health center has the facility, and the procedure requires maximum infection control measurements. The American College of Radiology finds this may disrupt the availability of radiological services and recommended portable chest X-ray (CXR) as a first-line triage tool. With moderate ease of use and interpretation and common side effects, CXR remains one of the most used non-invasive chest imaging techniques, including for the follow-up of COVID-19. CT should still be performed to confirm the severity and progression of the disease.

Conclusion

Chest X-ray (CXR) helps detect and monitor the rapid progression of lung abnormalities in long COVID-19 because of the availability, ease of use, interpretation, and common side effects.

REFERENCES